MATLAB for Data Analytics
What is Data Analytics?

Turn large volumes of complex data into actionable information

- **Descriptive**
 - What happened?

- **Diagnostics**
 - Why did it happen?

- **Predictive**
 - What will happen?

- **Prescriptive**
 - What should be done?
Data Analytics Workflow

Access and Explore Data
- Files
- Databases
- Sensors

Preprocess Data
- Working with Messy Data
- Data Reduction/Transformation
- Feature Extraction

Develop Predictive Models
- Model Creation e.g. Machine Learning
- Parameter Optimization
- Model Validation

Integrate Analytics with Systems
- Desktop Apps
- Enterprise Scale Systems
- Embedded Devices and Hardware
Data Analytics Workflow

Access and Explore Data

- Point and click tools to access variety of data sources
- High-performance environment for big data

Preprocess Data

- Built-in algorithms for data preprocessing including sensor, image, audio, video and other real-time data

MATLAB Analytics work with **business and engineering data**

Working with Messy Data

- Data Reduction/Transformation
- Feature Extraction
Data Analytics Workflow

Preprocess Data

Working with Messy Data

Data Reduction/Transformation

Feature Extraction

Apps

- Easy to use apps
- Wide breadth of tools to facilitate domain specific analysis
- Examples/videos to get started

Language

- Automatic MATLAB code generation
- High speed processing of large data sets

MATLAB enables domain experts to do Data Science

Develop Predictive Models

Model Creation e.g. Machine Learning

Parameter Optimization

Model Validation

Apps

Language

Easy to use apps
Wide breadth of tools to facilitate domain specific analysis
Examples/videos to get started

Automatic MATLAB code generation
High speed processing of large data sets
Data Analytics Workflow

Challenges

- End user: Operators, Analysts, Administrative Staff, customers etc.
- Different target platforms:
 - Cluster or Cloud environment
 - Standalone desktop applications
 - Server based Web and enterprise systems
 - Embedded hardware
- Different Interfaces: C++, Java, Python, .NET etc.
- Need to translate analytics to production environment
Integrate analytics with systems

MATLAB Analytics
run anywhere

Embedded Hardware

C, C++, HDL, PLC

Enterprise Systems

Standalone Application, Excel Add-in, Hadoop/Spark, C/C++, Java, Python, .NET, MATLAB Production Server

MATLAB Runtime
Key Takeaways

1. MATLAB Analytics work with business and engineering data
2. MATLAB enables domain experts to do Data Science
3. MATLAB Analytics run anywhere
Machine Learning is Everywhere

- Image Recognition
- Speech Recognition
- Stock Prediction
- Medical Diagnosis
- Data Analytics
- Robotics
- and more…
Machine Learning

Machine learning uses data and produces a program to perform a task

Task: Human Activity Detection

Standard Approach

- Hand Written Program
 - If X_acc > 0.5 then “SITTING”
 - If Y_acc < 4 and Z_acc > 5 then “STANDING”
 - ...

- Formula or Equation
 - \(Y_{activity} = \beta_1 X_{acc} + \beta_2 Y_{acc} + \beta_3 Z_{acc} + \ldots \)

Machine Learning Approach

- model: Inputs → Outputs

\[model = \langle \text{Machine Learning Algorithm} \rangle (\text{sensor_data, activity}) \]
Example: Human Activity Learning Using Mobile Phone Data

Data:
- 3-axial Accelerometer data
- 3-axial Gyroscope data
“essentially, all models are wrong, but some are useful”
– George Box
Machine Learning Workflow

Train: Iterate till you find the best model

Predict: Integrate trained models into applications
Parallel Computing Paradigm

Multicore Desktops

MATLAB Desktop (client)

Multicore Desktop

Worker

Worker

Worker

Worker

Worker

Worker

MATLAB multicore
Parallel Computing Paradigm

Cluster Hardware

Cluster of computers

MATLAB Desktop (client)
Migrate execution to a cluster environment

MATLAB
Parallel Computing Toolbox

MATLAB Distributed Computing Server

GPU
Multi-core CPU
Parallel Computing Paradigm

NVIDIA GPUs

MATLAB Desktop (client)

GPU cores

Device Memory

Using NVIDIA GPUs
Cluster Computing Paradigm

- Prototype on the desktop
- Integrate with existing infrastructure
- Access directly through MATLAB
Parallel Computing with MATLAB – Beyond PARFOR

Well-known features
- parallel-enabled toolboxes
- `parfor`
- `gpuArray`

Full spectrum of support
- batch submission, jobs and tasks
 - `batch`, `createJob`, `createTask`
- asynchronous queue for `feval`
 - `parfeval`
- parallel support for big data
 - `tall`, `mapreduce`
- distributed arrays ("global arrays")
 - `distributed`, `codistributed`
- message passing
 - `labSend`, `labReceive`
Parallel-enabled Toolboxes (MATLAB® Product Family)
Enable parallel computing support by setting a flag or preference

Image Processing
Batch Image Processor, Block Processing, GPU-enabled functions

Statistics and Machine Learning
Resampling Methods, k-Means clustering, GPU-enabled functions

Neural Networks
Deep Learning, Neural Network training and simulation

Signal Processing and Communications
GPU-enabled FFT filtering, cross correlation, BER

Computer Vision
Parallel-enabled functions in bag-of-words workflow

Optimization
Parallel estimation of gradients

Other parallel-enabled Toolboxes
Speed-up MATLAB code with NVIDIA GPUs

➢ Ideal Problems
 • Massively Parallel and/or Vectorized operations
 • Computationally Intensive

➢ 300+ GPU-enabled MATLAB functions
 • Enable existing MATLAB code to run on GPUs
 • Support for sparse matrices on GPUs

➢ Additional GPU-enabled Toolboxes
 • Neural Networks
 • Image Processing
 • Signal Processing

..... Learn More
Run Same Code on CPU and GPU

Solving 2D Wave Equation

![Graph showing CPU vs GPU performance](image)

CPU
- Intel(R) Xeon(R) W3550 3.06GHz
- 4 cores
- memory bandwidth 25.6 Gb/s

GPU
- NVIDIA Tesla K20c
- 706MHz
- 2496 cores
- memory bandwidth 208 Gb/s
Big Data capabilities in MATLAB

Distributed Arrays

Datastores

Apache Spark™ on Hadoop

Tall
Big Data capabilities in MATLAB

ACCESS
Access more data and collections of files than fit in memory

Large collections of data files
- datastore
- support for HDFS

PROCESS AND ANALYZE
Adapt traditional processing tools or learn new tools to work with Big Data

- **Statistical analysis**
 - tall arrays
 - distributed arrays and overloaded functions

- **Signal processing**
 - distributed arrays and overloaded functions

- **Deep Learning**
 - GPU

SCALE
Scale to compute clusters and Hadoop/Spark

- **Analysis of large tabular data**
 - tall arrays

- **Large simulations of environmental data**
 - distributed arrays and overloaded functions

- **Advanced techniques for power users**
 - MATLAB API for Spark
 - mapreduce
 - labSend / labReceive
MathWorks Services

- **Consulting**
 - Integration
 - Data analysis/visualization
 - Unify workflows, models, data

 www.mathworks.com/services/consulting/

- **Training**
 - Classroom, online, on-site
 - Data Processing, Visualization, Deployment, Parallel Computing

www.mathworks.com/services/training/